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The so&tion of the conjugate problem of convective-conductive heat transfer in the channels of power 
plants is presented. The problem of convective heat transfer in the gas phase is solved by the integral 
theor3.' of heat transfer. A one-dimensional problem of conductive heat transfer in the material of the 
wall is solved by the finite-d~fference method. Relative laws of heat and mass transfer and friction are 
obtained by numerical integration with respect to the boundary-layer thickness. The effect of the mate- 
rial and geomet~, of the wall on the level of problem "conjugation" is studied. 

Introduction. Mass ideality of the heat protection of high-power plants (HPPs) can be reached using 
most developed methods of calculation of heat and mass transfer. Modem HPPs are characterized by a wide 
range of operating times (0.1-300 sec), the presence of  high-intensity heat fluxes (the temperatures of fuel 
combustion vary from 1500 to 4000 K), considerable elongation of the channel (L /d= 0,5-100), and nonsta- 
tionarity of processes in a working body (start-up, control) and in the material of the uncooled wall. In model- 
ing the thermal state of an HPP, a conjugate formulation of the problem becomes necessary due to the 
calculation of temperature fields in the wall material (especially when materials susceptible to thermal shock 
are used) and evaluation of heat losses of the working body (the most urgent in elongated systems of  gas 
distribution). 

Formulation of the Problem. In spite of the long-standing attempts by different authors to solve the 
issue of the measure of the effect of conjugation in equations of convective-conductive heat transfer, this prob- 
lem, being nontrivial, still requires consideration in each specific case. Therefore, we study the relation between 
conjugation and the parameters characterizing the heat transfer between a gas and a solid body for the cases 
occurring in the practice of HPP design. 

According to [1], the necessity of solving problems in a conjugate tbrmulation can be evaluated by the 
Bran number introduced as a criterion of conjugation 

Br v = ~-  b pro 4ReO.8 
~,~; X 

It is assumed that for Br < Brcnt the problem can be solved in a nonconjugate formulation vcith suffi- 
cient accuracy. A. V. Luikov [1] suggested to determine Brcrit on the basis of comparison with experiment or 
with an accurate analytical solution. Since it is impossible to obtain an analytical solution for the general case 
of  a turbulent gas flow past a wall, then consideration of the Brun number as a quantitative criterion is of no 
practical value, but it may be useful as a qualitative criterion. 

In the analysis of  quantities entering into the Brun number we can distinguish the component,  

9~* prmRe n, which is responsible for flow in a boundary layer. It becomes clear from this component that in 
X 

order to analyze the effect of the material and the structural features of the wall on problem conjugation, one 
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Fig. i. Scheme of a flow past the HPP wall. 

should ensure identical conditions in the boundary layer and at the conjugation point, i.e., study flow of the 
same gas under identical initial conditions, with the same coordinate X, but in combination with different walls. 

As such model flow we consider subsonic flow of combustion products in a channel of a model solid-fuel gas 

generator operating at constant pressure. 
Mathematical Model. A mathematical model of the conjugate problem of nonstationary convective- 

conductive heat transfer for a gas-solid system (see Fig. 1) is written as: 
Gas phase. Taking into consideration that the flow is lbrced and the transfer of substances along X 

greatly exceeds the transfer along r, we can assume that the flow is subdivided into two regions: the region of  
inviscid flow which (in a one-dimensional approximation) is described by the Euler equations 

ave ave ap Oh e a;,~ ap 
oeVe-~x +Oe Ot - ax' PcV°-~x +Oe at - a t '  

and the boundary-layer region described by the Prandtl equations 

av,. av,. ap l a / av,. I 
P'-~-t + PV"-Ox-.r + p v r  ar = -  c)'-'~+rO-7 " ~rla-~-)"  

3t7" 3h* 3h* 
° T +  °vr-bT +pV  ar - - -  OP + r ~ r r  r P r  0--7) + r 01-~_ ' Pr Ot Or " 

For the entire flow region, the continuity equation must hold: 

o p . l ?  a 
* 7 ~ (o"Vr) + ~ (PE) = 0. 

The system is closed by the equation of state of an ideal gas 

p = pRT. 

Since already in the beginning of the duct of the considered HPPs at x = 5 mm the number Rex = 
peVex/g is 2500, i.e., it exceeds a critical number Rec~ ---2200, the laminar portion can be neglected and flow 
along the duct of the HPP can be assumed to be turbulent. Then the system of Prandtl equations can be con- 
sidered as a system of averaged equations. 

Solid body. The process of energy transfer in a solid body is described by the equation of  heat conduc- 
tion 

0T 
cp ~ = div (~, grad 7") + qv- 
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To close this system, one should set boundary-value conditions. 
Initial conditions (x = 0): 
a gas phase 

a solid body 

Boundary conditions: 

boundary Sj 

boundary $2 

V (x, r) = Vin (X, r) ,  h* (x, r) = hin (x, r) , p (x) = Pin (x) ; 

T (x, r) = Tin (x, r ) .  

x = x  0: V(I")=V 0(r, '~), h*( r )=t l  0 ( r ,x) ,  p=po(X)" 

, = R w - 6 "  V lr=_Rw_  = Ve • 

r =  R w - 811 : h*[ r=R-8,, = he ; 

aT, 
V~=0,  (pV) r= jw,  h*=hwl ,  - ~ , ~ = q c o n v  +qradl, 

- ~ ~ = qrad2 + qn.eonv2 , 

where hwl is the gas enthalpy calculated at the wall temperature Twl, and.jw is the mass flow rate of the pro- 
ducts of pyrolysis obtained by solution of the equation of heat conduction. 

With the entire possible spectrum of perturbation factors that are present in the actual structures (non- 
isothermicity, injection, longitudinal gradient of pressure, gradient of stagnation enthalpy, dynamic and thermal 
nonstationarity, surface roughness, longitudinal curvature), the use of laborious methods of convective heat 
transfer (k-e, etc.) seems inexpedient tbr solving conjugate problems. Integral methods are traditionally as- 
sumed to be most universal, simple in use, and possessing the highest, among other methods of convective heat 
transfer, index (accuracy/labor consumption) [2]. Therefbre, in the present work we use a method based on the 
solution of boundary layer equations in the form of integral relations in combination with integration of  the 
system of equations with respect to the boundary-layer thickness tbr obtaining relative laws of heat and mass 
transfer and friction. 

The system of equations for the initial section has the following tbrm: 
the momentum equation 

H'D --+0 Re** 3 Re** + Re** (H + 1) --+0Ve Re** ( H -  H') D 3V e 

W e 0t t~X W e 0X ~fiee ~t 
m +  

+ _ _  m - + ReD; 
R 0 O~ w 

(1) 

the energy equation 
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H'hD o-} Reh" + a Re;" + 

V e a t  aX 

H' hRe h D Oh w H hRe h D Oh w 

V e (h i -  hw) at V¢ ( h ~ -  hw) at 
m +  

Re h Oh w Re h Oh w (H - H') Re"* D Ohm, 
- - +  - - +  

V e h w - h w at 

HRe** 0h w HhRe,~*DOV e Re h aR 0 
- -  + - -  - -  - (b w + St) Re o • 

R o 0x 

(2) 

the equation of flow rate 

D (H' - H) 0 Re** a Re** D (H - H') Re** ~ e  
H + 

W e at aT V e at 
m +  

RoReD ~Ve RoReo 0Pe RoReo 0Pe + - - - - + - -  + - - - -  

2VeD o~Y 2PeV e Ot 2peD ay 

HRe**0R o Re D~R 0 

R 0 a]: D aT 
b w Re D • (3) 

the equation of motion lbr the inviscid core of the flow 

aVe + °~Ve °~P (4) 

the energy equation for the inviscid core of the flow 

at,S ahS ap (5) 
Pe ~ + PeVe a x -  at 

Relations (1)-(5) in combination with the equation of state of  an ideal gas compose a closed system of  

equations relative to six unknowns: Ve, Pc, P, he, Re , and Reh . 
Expressions (1)-(3) hold their tbrm for the transition region and the region after the joining of the 

boundary layers, although two additional equations are required to close the system. For this purpose, the 

method described in [3] is used. 
The system of equations tbr determination of the relative laws of  heat and mass transfer and friction is 

written separately. This system allows one, on each step along the longitudinal coordinate X, to calculate the 
values of the relative laws reflecting the difference between the actual boundary layer (under the effect of the 
entire set of perturbation factors) and the model boundary layer. Thus, we obtain a system of partial differential 

equations of the tbrm 

af m ~ m  

ax ax + g ff) ' 

where fix, "c) is the unknown function (Ve, Pe, he*, Re**, Re~*). 
Two ways of solving this system are possible: 1) solution of the system of partial differential equations 

by the finite-difference method; 2) use of a quasistationary method of "bands" where a system of ordinary 

nonlinear differential equations of  the tbrm Of/ax = g(D is solved for specific instants of  time xl, x2 . . . . .  and 
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Fig. 2. Schematic diagram of a model HPP: 1) source of a working body; 
2) chamber; 3) gas duct; 4) Laval nozzle. 

TABLE 1. Versions of  Walls for Model Studies 

Number Version 1 Version 2 Version 3 
of layer material h, mm material h, mm material h, mm 

Carbon-carbon Glass fiber plastic 5 High-temperature 3 composite 5 
1 material steel material 

2 _ _ Glass fiber plastic 2 - 
material 

I 3 
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Fig. 3. Influence of wall material on the coefficient of heat transfer (from 
the solution of the conjugate problem): 1-3) versions. ~, W/(m2-K); x, sec. 

xk with the second way being more simple and more efficient, since the system of equations can be solved by 

the Runge-Kutta method, the Adams method, and other methods which possess good convergence and stabi- 
lity. In this case, the integral boundary-layer theory allows one to take into account the effect of nonstationarity 

directly on the relative laws of heat and mass transfer and friction. 

A temperature field in the material of the structure wall can be obtained on the basis of  a one-dimen- 
sional nonstationary equation of heat conduction, for the solution of which we use a modification of the finite- 

difference method based on the use of the reference-volume method. 

Convective and conductive parts of the problem are conjugated within the framework of the iteration 
procedure with respect to the temperatures and heat fluxes at the phase interface. 

Discussion of  Results. A schematic diagram of a model HPP is given in Fig. 2. The initial temperature 

of the wall was assumed to be equal to 283 K, the temperature of the working body was 1300 K, the working 
pressure in the chamber was 40 atm, and the time of reaching the mode was 0.1 sec. 

We conducted three numerical experiments, in which walls corresponding to limiting versions of the 

range of Brun numbers were studied and all materials and geometries of the walls were selected proceding 
from the actual designs (see Table 1). 

Figures 3 and 4 present results of  calculation of a conjugate problem of heat transfer for the three 

versions mentioned above. The results are given in the form of curves of the relative temperatures, with the 
coordinate y < 0 corresponding to the wall, and v > 0 to the boundary layer. 

The thickness of  the boundary layer in all the versions was equal to about 5 ram, which made it pos- 

sible to construct the temperature profiles with the absolute coordinate y for an instant of 0.3 sec that charac- 
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Fig. 4. Distribution of the temperature fields in a wall (y < 0) and in a 
boundary layer (y > 0): a) 1) version 1 (30 sec, Br --- 982); 2) version 2 
(30 sec, Br = 17); b) version 3 [1) 0.3 sec, Br = 7; 2) 30 sec, Br = 15]. 
y, m.  

terizes the period of start of  the gas generator with a "cold" structure, and for an instant of 30 sec that corre- 
sponds to about the middle of  the operating cycle of the engine when the structure is already heated. 

The large difference in values of the Brun number, which is equal to 982 tor a wall made of  pure 
glass-fiber-plastic material and 7 for a wall made of highly heat-conducting carbon-carbon composite material 
(CCCM), should be noted. A combined metal-glass-fiber-plastic wall occupies an intermediate position. 

The highest difference of temperatures over the thickness of  the wall is observed tbr version 1 with a 
solid glass-fiber-plastic wall; the difference is OT> 20. Moreover, Br = 982, which, according to [i], indicates 
the highest conjugation among all the cases considered. However, if we analyze the curves of the coefficient 
of heat transfer ~ (Fig. 3), we see that the coefficient of heat transfer tbr glass fiber plastic reaches values 
close to asymptotic ones very quickly. This indicates that tor this case, especially when ~ > 1 sec, it is reason- 
able to use a nonconjugate tormulation and to solve the problems for a gas and a solid body separately. 

An opposite picture is observed for version 3 (a solid wall made of CCCM). The Brun numbers do not 
exceed 15, and the relative temperature difference over the wall thickness is smaller than 0.2, which, according 
to [1], indicates a comparatively low degree of problem conjugation. However, it becomes clear from a consid- 
eration of the curves that the coefficient of heat transfer approaches an asymptotic value comparatively slowly. 
Moreover, in this version a considerable discharge of energy by radiation from the exterior wall is present, 
which is in no way allowed for by the number Br. Consequently, this wall cannot be considered as isothermal 
and the problem given should be solved in a conjugate formulation with iteration joining with respect to the 
heat fluxes. 

The case of  a combined wall occupies an intermediate position with respect to Br numbers. At the 
initial instant, heat is expended on heating a metal layer with rather high thermal conductivity, which leads to 
a comparatively small temperature difference over the wall, smaller than 0.2. However, by the 30th second, due 
to the redistribution of heat over  the thickness of  glass fiber plastic the temperature difference reaches values 
much higher than unity. An analysis of the curves of et shows that they approach asymptotic values rather 
slowly, thus indicating the necessity of solving the problem in a conjugate formulation. Moreover, in contrast 
to the case with pure glass fiber plastic, in this version the conjugation of the problem will change greatly as 
the wall is heated. 

Conclusions. The study conducted allows one to draw the conclusion that the Brun number does not 
reflect all subtleties of  heat transfer processes in HPP and in a number of  cases (a wall made of  CCM, a 
glass-fiber-plastic wall), an analysis of conjugation on the basis of the Brun number can lead to opposite con- 
clusions. Nevertheless, for simple cases, the Brun number Br can be used for a preliminary estimation as a 
qualitative criterion of conjugation. 
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N O T A T I O N  

5, boundary-layer thickness; OT, relative temperature, where O = (T-Tw)/(T~e- Tw) for the solid body 
and O = (T* - Tw)/(~ - Tw) for the boundary layer; "c, shearing stress; Ct" = 2"Cw/(peV2), coefficient of friction; 
h* = h + V~/2, stagnation enthalpy; h,-e = h + r(V~/2), enthalpy of recovery; Re** = (peVe~**)/P, characteristic 
Reynolds number; ReD, Reynolds number constructed from the channel diameter; St = qw/(peVe[h~,." e -  hw]), 
Stanton number; Ahl = h~e - hw, difference of enthalpies; qv, source component in the equation of heat conduc- 
tion; D, characteristic dimension, channel diameter. Subscripts: s, solid body; f, fluid; e, boundary of the 
boundary layer; 0, model boundary layer; w, wall; h, thermal boundary layer; 1, parameter at the boundary Sl; 
2, parameter at the boundary $2; in, initial; oh, chamber; g.d, gas duct; cr, critical; conv, convection; n.conv, 
natural convection; tad, radiative; crit, criterial. 
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